skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ubaru, Shashanka"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The cumulative empirical spectral measure (CESM) $$\Phi[\mathbf{A}] : \mathbb{R} \to [0,1]$$ of a $$n\times n$$ symmetric matrix $$\mathbf{A}$$ is defined as the fraction of eigenvalues of $$\mathbf{A}$$ less than a given threshold, i.e., $$\Phi[\mathbf{A}](x) := \sum_{i=1}^{n} \frac{1}{n} {\large\unicode{x1D7D9}}[ \lambda_i[\mathbf{A}]\leq x]$$. Spectral sums $$\operatorname{tr}(f[\mathbf{A}])$$ can be computed as the Riemann–Stieltjes integral of $$f$$ against $$\Phi[\mathbf{A}]$$, so the task of estimating CESM arises frequently in a number of applications, including machine learning. We present an error analysis for stochastic Lanczos quadrature (SLQ). We show that SLQ obtains an approximation to the CESM within a Wasserstein distance of $$t \: | \lambda_{\text{max}}[\mathbf{A}] - \lambda_{\text{min}}[\mathbf{A}] |$$ with probability at least $$1-\eta$$, by applying the Lanczos algorithm for $$\lceil 12 t^{-1} + \frac{1}{2} \rceil$$ iterations to $$\lceil 4 ( n+2 )^{-1}t^{-2} \ln(2n\eta^{-1}) \rceil$$ vectors sampled independently and uniformly from the unit sphere. We additionally provide (matrix-dependent) a posteriori error bounds for the Wasserstein and Kolmogorov–Smirnov distances between the output of this algorithm and the true CESM. The quality of our bounds is demonstrated using numerical experiments. 
    more » « less